Molecular engineered A–D–A–D–A organic electrode system for efficient supercapacitor applications
نویسندگان
چکیده
A novel acceptor (A)–donor (D)–acceptor (A) molecular architecture for pseudocapacitor applications with imrpoved electrochemical performance is demonstrated.
منابع مشابه
Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications
Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid ...
متن کاملGraphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications.
The two-dimensional (2D) transition metal dichalcogenide nanosheet-carbon composite is an attractive material for energy storage because of its high Faradaic activity, unique nanoconstruction and electronic properties. In this work, a facile one step preparation of a molybdenum disulfide (MoS2) nanosheet-graphene (MoS2/G) composite with the in situ reduction of graphene oxide is reported. The s...
متن کاملChemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications
Entangled carbon nanofibers (CNFs) were synthesized on a flexible carbon fabric (CF) via water-assisted chemical vapor deposition at 800°C at atmospheric pressure utilizing iron (Fe) nanoparticles as catalysts, ethylene (C2H4) as the precursor gas, and argon (Ar) and hydrogen (H2) as the carrier gases. Scanning electron microscopy, transmission electron microscopy, and electron dispersive spect...
متن کاملReduced chemically modified graphene oxide for supercapacitor electrode
An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g(-1) at 0.2 A g(-1) in 2 M H2SO4 compared to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials advances
سال: 2023
ISSN: ['2633-5409']
DOI: https://doi.org/10.1039/d3ma00296a